
Towards a System of Patterns for Augmented
Reality Systems

Thomas Reicher, Asa MacWilliams, and Bernd Bruegge
Institut für Informatik

Technische Universität München
D-85748 Garching bei M̈unchen, Germany

(reicher,macwilli,bruegge)@in.tum.de

Abstract— The discussion and comparison of software archi-
tectures of different Augmented Reality systems is often difficult
because of the heterogeneous ways the developers document
them. They use different notations, different abstraction levels,
and have different intentions. On the other hand, there are terms
that are quite well-known and understood among the developers
of Augmented Reality systems that describe an employed abstract
pattern or technique, such as scene graphs or OpenGL for
rendering. Such patterns can be found at different abstraction
levels.

We propose to describe Augmented Reality systems by a system
of such patterns. The base is an abstract generic architecture
which describes the common subsystems found in most Aug-
mented Reality systems. This approach allows to compare and
discuss Augmented Reality systems by comparing the patterns
they employ to implement a particular subsystem. We present a
set of patterns that we identified in study on software architec-
tures for Augmented Reality systems. As an example we describe
the DWARF Pathfinder system by its employed patterns.

I. I NTRODUCTION

The discussion and comparison of different software archi-
tectures for Augmented Reality (AR) is often difficult because
of the heterogeneous ways the developers document them.
They use different notations, different abstraction levels, and
have different intentions.

A common ground for the comparison of software ar-
chitectures is the analysis object model [1, pp 510] of the
particular application. Often an application belongs to a class
of applications, the domain. For each domain, there are specific
functional and non-functional requirements which are mapped
to common functions. In each architecture, these functions
are implemented by subsystems. And for the implementation
of a subsystem a developer uses a particular approach. In a
given domain such as Augmented Reality, similar or identical
approaches are used by various developers. Often this stems
from the common use of software components or libraries that
implement the same functionality, for example OpenInventor.
The result is a vocabulary of common terms that are under-
stood by most Augmented Reality developers. This enables
discussion of the software architectures on the base of such
terms. To classify the approaches, we extracted an abstract
generic architecture for Augmented Reality systems [2] from
the descriptions of existing systems. A software architecture
for AR can be described by the set of approaches used in the
system.

While this approach allows us to discuss Augmented Reality
systems, it is only of little use for the design of new systems.
For this, we must measure each approach within a certain
context. The catalogue of known approaches then can mature
to a system of knownpatternsfor Augmented Reality systems.
Each pattern must state the context where it is used, the
problem it solves and the solution. In software architecture,
patterns are structured descriptions of successfully applied
problem-solving knowledge. Each approach is described by
name, goal, motivation, a description, usability, consequences,
and project usage. This follows the scheme of describing
architectural or design patterns, e.g. as used in [3], [4].

II. A SYSTEM OF PATTERNS FORAUGMENTED REALITY

A. A Generic Software Architecture for Augmented Reality

For the comparison of different software architectures, we
developed an abstract generic architecture for Augmented
Reality Systems on the base of the model-view-controller
pattern (MVC) [5]. The MVC pattern separates interactive
systems into subsystems for data and control code, user input
and user output. We extend this model with specific extensions
for Augmented Reality and ubiquitous computing, in particular
tracking, a world model, and context. This divides an Aug-
mented Reality system into a set of six subsystems: application
(MVC model), interaction (MVC control), rendering (MVC
view), tracking, context, and world model. These subsystems
collaborate with each other and consist in turn of several
components. The architectures of Augmented Reality systems
can be mapped to this generic architecture [2].

B. Patterns Sorted by Subsystems

On a subsystem level the Augmented Reality system de-
velopers use different techniques and building blocks to im-
plement the subsystems, e.g. tracking or presentation. An
analysis of existing systems reveals that several techniques and
building blocks recur in various existing systems—sometimes
explicitly, such as when two systems use a common library,
and sometimes implicitly, when different developers apply the
same basic techniques. The selection depends on the non-
functional requirements and the design goals.

These techniques and building blocks can be extracted from
existing systems and described as abstract reusable patterns for
Augmented Reality systems design. This is heavily based on

the idea ofdesign patternsin software architectures. Patterns
are structured descriptions of successfully applied problem-
solving knowledge:A software architectural pattern describes
a specific design problem, which appears in a particular
design context, and presents a generic solution scheme. The
solution scheme specifies the involved components, their re-
sponsibilities, relationships and the way they cooperate[6, pp
8].

The following list gives an overview of the patterns we
found ordered by subsystems. We cannot discuss all of the
identified patterns, instead we give some examples of interest-
ing Augmented Reality patterns.

a) Application: The application subsystem is where de-
velopers can add application-specific logic. Various solutions
are possible with different advantages and disadvantages. We
identified the following approaches:
Main Executable Write the application in a high-level pro-
gramming language, explicitly describing what happens when.
Scripting Use a scripting wrapper around all components that
have performance constraints. These components are written
in compiled languages such as C++.
Node in Scene GraphModel the world around a user as a tree
of nodes, including non-graphical objects that include control
code.
Part of Event Loop Provide hooks that can be called within
a rendering library’s update loop and that react to changes in
the scene.
Web Service Keep control flow on a web server, publish AR
content to an AR-enabled web client.
Multimedia Flow Description Use a high-level markup lan-
guage for domain specific content such as workflow informa-
tion and AR content such as repair tasks.
Application Component In a component-based system, en-
capsulate all application logic in a separate component that
communicates with the others.

b) Tracking: Without tracking, Augmented Reality is
impossible. Here, we concentrate on architectural approaches
of gathering tracking data, not on the tracking devices or
algorithms themselves.
Tracking Server Offload the processing of raw tracking data
to a server in the user’s environment and only transfer the
result to the client system.
Networked Trackers For each tracking device, provide a
middleware wrapper with an interface to the tracker. Con-
sumers find trackers through middleware services and then
communicate transparently.
Operating System ResourcesThe tracking devices are ac-
cessed directly through operating system drivers.

c) Interaction: Augmented Reality systems tend to con-
centrate more on output than on input; however, the interest
in new user input techniques and architectures is growing.
We concentrate on architectural approaches of combining user
input, not on the input devices themselves:
Direct Access Include input handling code in the application
code, with explicit references to the types of input devices.
Browser Input Functions Use VRML browser events sent out

through the External Authoring Interface (EAI) interface when
the user clicks on on-screen objects with the mouse or when
the gaze direction coincides with certain objects.
Networked Input DevicesProvide an abstraction layer for
input devices and a description of how the user input can
be combined; interpret this description using a controller
component.
Input Manager Coordinate several lower-level input devices
to create higher-level input.

d) Presentation:This subsystem deals mainly with the
presentation of three-dimensional information; thus, most of
the approaches here are geared specifically to rendering. There
are several approaches:
VRML Browser Use a third-party VRML browser, often
designed as a web browser plugin, to display 3D information;
access it using the EAI.
OpenGL Use low-level OpenGL 3D constructs.
Scene Graph Use scene graph library such as (Open) Inven-
tor, OpenSG, Open Scene Graph.
Proprietary Scene Graph Use own scene graph for graphics
rendering on top of OpenGL.
Video Transfer A server augments video images and sends
them to the client, which shows them on the HMD.
Multiple Viewer Classes Provide an abstraction layer for
different types of viewers (AR, speech, text etc.) that can
handle different document types.

e) Context: The context information must be gathered,
processed and distributed to interested components. Possible
approaches are:
Blackboard Information producers write information to the
Blackboard, a central component; consumers read data, pro-
cess it and may write new, higher abstract data to the Black-
board.
Repository Components that produce context information
write to the repository; components that are interested into
context information read from the repository.
Publisher/Subscriber Context providers connect as publish-
ers to a central messaging service, context consumers as
subscribers.
Ad hoc An interested component directly queries the context
producer component or it registers itself as subscriber.

f) World model: The World Model is used to describe
the world around the user, particularly the virtual objects and
their position. Besides that, the world model must also store
information about the marker positions or any other features
required for tracking. Approaches are:
OpenGL Code The developer creates OpenGL code and calls
the OpenGL rendering engine to display it.
Scene Graph Format With an authoring tool, a content
developer creates the model of a virtual scene.
Object Stream The runtime environment allows serializing
and deserializing objects to and from disk.
Configuration File Load a file, e.g. for marker positions, at
startup time or upon request at run time.
Database Instead of loading a particular scene from a file,
the system has access to a database system with information

Main
Executeable

Scripting

Scene
Graph Node

Event Loop
Callback

Webservice

Multimedia Flow
Description

Direct
Access

Browser
Input

Networked
Devices

Direct
Access

Tracking
Manager

Networked
Trackers

OpenGL
Code

SceneGraph
Code

Object
Stream

Database

Blackboard
Repository

Publisher
Subscriber

Adhoc

VRML
Browser

Scene
Graph Panel

Proprietary Scene
Graph Panel

Video
Transfer

Multiple
Viewers

can use
can use

uses

implemented by

has

backend

saved as
has uses

hardcoded class

uses

part of

implemented by

uses rendering server

OpenGL
Panel

usesuses

subscribes to
devices

reads context device

coordinates

reads tracking data

Application
Component

Input
Manager

coordinates

subscribes to

shows rendered
 image

uses

coordinates

accesses

implemented by

implemented by

Configuration
Filehardcoded

configuration

hardcoded
configuraton

subscribes

subscribes

provides input

Context
Manager

is subscriber

Presentation

Control

Interaction

Tracking

Application World Model

contributes to

Fig. 1. Relationships between approaches for subsystem implementation. Several approaches are used in combination within an AR system. One approach
might require the use of another approach or prevent its usage.

about the environment, e.g. in a geographical schema.
Figure 1 shows all identified approaches and links between

approaches that are related to each other. For example, a
webserver based application subsystem is often connected with
a browser-based interaction and presentation subsystem. Each
patterns is shown within the subsystem it belongs to.

III. E XEMPLARY APPROACHES INDETAIL

We cannot discuss all the identified approaches here. Instead
we present some examples. An approach is described by name,
goal, motivation, a description, usability, consequences, and
known project usage. This follows the scheme of describing
architectural or design patterns, e.g. as used in [3], [4]. We

see this as a first step towards the development of a pattern
language for Augmented Reality system composition.

Name: Node in Scene Graph (Application):
Goal: Embed application in world model.
Motivation: In Augmented Reality, user interaction is

connected with the physical environment.
Consequently, applications are often linked
to places in the real world. With this ap-
proach, the application is seamlessly embed-
ded in the environment.

Description: A scene graph models the world around a
user as a tree of nodes. Each node can be
any type of object, usually graphical ones.

But there are also non-graphical objects that
include control code.

Usability: Together with a scene graph-based rendering
approach.

Consequences: The scene graph-based approach for an ap-
plication handles the control flow to the
underlying scene graph platform, e.g. Open
Inventor. On the other hand, this approach
offers a relatively simple possibility for the
implementation of shared applications for
locally nearby users. One 3D interface can
be shared among several users but displayed
for each user from a different view.

Known use: Studierstube [7], Tinmith [8], MARS [9]

Name: Web Service (Application):

Goal: Treat Augmented Reality as one type of
media among others.

Motivation: For content-based applications, the web-
based approach has been proven to be
a reasonable approach. Augmented Reality
scenes and world model information can be
seen as an Augmented Reality document.
A scene such as an arrow that points to a
particular button in front of the user is then
described in document that is loaded from a
web server.

Description: The control flow is situated on a web server
and implemented within a web service. This
web service is published under a particular
web address and the answer of the service
is rendered on a web client. If the answer
contains Augmented Reality content, the
Augmented Reality component is activated
to display it.

Usability: This approach can be used where the focus
is on displaying various types of content and
loading them dynamically from a server.

Consequences: The client and the server must be connected.
If a connection cannot be guaranteed, there
must be a proxy available locally that em-
ulates the server. Alternatively, a smaller
instance of the server component may be
deployed on the client machine. This ap-
proach should be combined with a scene-
based rendering component, e.g. a VRML
or custom Augmented Reality browser.

Known use: ARVIKA [10]

Name: VRML Browser (Presentation):

Goal: Use a rendering component that can display
simple virtual scenes.

Motivation: The usage of a VRML browser is a simple
way to display virtual scenes. The standard-
ized VRML format, a markup language for
the description of virtual worlds, allows the
use of tools for authoring and rendering

virtual worlds.
Description: Use a third-party VRML browser, often de-

signed as a web browser plugin, to display
3D information. Use the External Authoring
Interface (EAI) that is part of the VRML
standard to modify the scene and set the
viewpoint based on tracking data.

Usability: A VRML browser component can be used if
the complexity of the scenes is relatively low
and the browser is only used as a rendering
engine.

Consequences: The advantages of using a VRML browser
are the standardized format and the reuse
of tools for authoring and the reuse of ex-
isting components. This allows rapid proto-
typing of Augmented Reality system based
on VRML scenes. The disadvantages are
that the EAI is restricted to relatively simple
operations and that tying the VRML browser
to the rest of the system may be tedious.
Also, the rendering performance of VRML
browsers is not as high as that of native
OpenGL.

Known use: STAR [11], DWARF Pathfinder [12]

Name: Scene Graph (Presentation):

Goal: Use a rendering component that allows more
complex and dynamic scenes.

Motivation: For the representation of 3D environments,
scene graphs have shown to be a reasonable
choice. The level of abstraction is higher
than for OpenGL, but they are much more
powerful and flexible than VRML browsers
with their limited application programming
interface. Most scene graph components can
read VRML based descriptions of scenes.

Description: A scene graph is a structure that is based
on a 3D scene database and includes objects
typically used in 3D graphics such as var-
ious bodies, materials, lights, and cameras.
Additionally, any other classes can be stored
in a scene graph. A typical feature of a scene
graph is the ability to traverse it and update
the linked objects. Examples are (Open)
Inventor, OpenSG, Open Scene Graph.

Usability: Use a scene graph if you don’t need the low-
level graphics access that OpenGL provides
but want to render more complex scenes and
need more dynamic access than a VRML
browser offers.

Consequences: Can restrict the possibilities for modeling
the application.

Known use: ARVIKA [10], Studierstube [7],
Tinmith [8], DWARF Sheep [13]

We are aware of the fact that the above list is not complete
and should be seen as a starting point. We collected the

approaches on a discussion page that is open to interested
parties1.

IV. EXAMPLE : DWARF PATHFINDER

As a case study for describing the software architecture
of an existing Augmented Reality system using a system of
architectural approaches, we present the DWARF Pathfinder
system [12].

DWARF is a representative of the group of peer-to-peer
systems. Goal of this architectural approach is the seamless
integration of DWARF-based systems deployed on wearable
computers into a ubiquitous computing environment. The base
for this approach is a middleware designed for ubiquitous com-
puting applications [14]. Note that the peer-to-peer approach
is a pattern itself, but on a lower architectural level.

Application. DWARF Pathfinder uses theApplication Com-
ponent approach. This is a typical approach for distributed
systems. The application logic is encapsuled into a distributed
component that collaborates with other distributed compo-
nents. The Application Component is responsible for the
bootstrapping and provides the glue code for the application.
Internally it uses aWeb Serviceapproach that provides the
application content over Internet. The content itself is executed
by an interpreter for a multimedia flow description language
(Multimedia Flow Descriptionapproach).

The advantage of this approach is that the content for
the Augmented Reality system is described in a high-level
language. This allows a faster development of new content.

Tracking. DWARF Pathfinder used a combination of dif-
ferent tracking modalities. There was no hybrid tracking, each
modality covered a specific part: GPS tracking for outdoors,
room tracking to track the location within a building, and
optical tracking for near-range. Each tracker worked indepen-
dently and as part of a distributed system.

As a distributed system Pathfinder could use the approach
of Networked Trackerscombined with the approach to use a
Tracking Managerthat coordinates the trackers.

Interaction and Presentation.The goal for Pathfinder’s in-
teraction and presentation subsystems was to support different
types of viewers depending on the content and to reuse existing
viewer components. Pathfinder was developed to show simple
augmentations.

The solution found was to use a web-based approach and
write adaptors to integrate third-party web components with
DWARF. The central component was a web browser with
several plugins. Pathfinder employs a VRML plugin for 3D
graphics controlled over the External Authoring Interface
(EAI), a plugin for speech recognition, and an HTML frame
for text and untracked graphics. Thus, Pathfinder uses the
VRML BrowserandMultiple Viewersapproach for output and
Browser Inputand Input Manager for input. Technically, a
User Interface Engine combined input and output control.

World model. Pathfinder used a simple file-based world
model. The tracking information was based on a proprietary

1http://wwwbruegge.in.tum.de/projects/lehrstuhl/
twiki/bin/view/DWARF/ARPatterns

format for saving information about the environment such
as the building and the area, and VRML files for the rep-
resentation of 3D scenes. The approach is therefore called
Configuration File.

V. EMERGING APPROACHES

The list of approaches above identifies solutions for subsys-
tems that we found in studying Augmented Reality systems.
Besides these approaches in current systems, we identified
several trends that we expect will result in new architectural
approaches, but are not systematically employed yet.

Use scene graph for view and model.Most projects use
a scene graph only as the viewer component of the system.
Accordingly, only graphical objects are saved in the scene
graph, often in VRML format that can be created by many
authoring tools. But similar to HTML for web content, VRML
has no means to transport the semantics of the objects in the
model. Even feature information is not included in the model
but saved separately. Some projects store every object that are
related to some place in the world in the scene graph. Even
applications become part of it, for example used in Tinmith
and Studierstube. But there is no open format for world model
information, Tinmith and Studierstube use object serialization
mechanisms.

Use distributed trackers over middleware.Most commer-
cial tracking systems are boxed and must be connected using
low level communication means such as Unix sockets. Many
projects try to encapsulate these low level access methods
in higher level approaches from distributed computing, for
example, the ACE [15] library or CORBA [16].

Provide multiple views on world. Most Augmented Re-
ality systems are single-user systems. Some support multiple
users, such as Studierstube, AR Boarderguard [17] (based on
MR Platform) or DWARF Sheep [18]. Nevertheless, these
solutions still lack a general concept based on a world model
that is application independent. The approach that comes
nearest to that goal is Studierstube with an extension of
OpenInventor, called Distributed OpenInventor.

Adapt to tracking quality. Most current Augmented Re-
ality systems assume a homogeneous tracking quality at any
time. However, this is more a goal than reality. Due to tech-
nical compromises such as range of tracking devices or price,
there will be the need to adapt the overall system to a varying
tracking quality. Particularly the presentation subsystem must
be adaptable. An existing example is AIBAS [19].

Model integration. There is a break between the 3D
coordinate system of the tracking and the rendering subsystem,
the network-oriented model of ubiquitous computing resources
in the environment, and the relational databases used in
industry [10]. We expect the integration of these models to
be the research question to be solved for Augmented Reality
to leave the labs.

VI. CONCLUSION

A system of abstract approaches for subsystems is a prac-
tical way to discuss the software architectures of existing

applications and prototypes. It provides a common vocabulary
of well-known approaches for developers in the Augmented
Reality domain. Of course this requires an agreement among
the developers on the chosen names for the approaches.

In a next step, approaches that describe existing systems
must mature into full patterns that can be used as guidelines
for the development of new systems. Each approach must be
examined for its usability in a specific context.

In this work, we have only considered architectural patterns.
In several subsystems such as tracking, it would be worthwhile
to establish more technical or algorithmic patterns for complex
tasks such as sensor fusion. Also, existing virtual reality
systems can provide a rich source for additional patterns that
can be applied not only to VR, but to AR as well.

ACKNOWLEDGMENTS

This work was supported by the German Federal Ministry
for Education and Research (BMBF) in the ARVIKA project,
the High-Tech-Offensive Zukunft Bayern of the Bavarian
Government, and the compound project Forsoft 2 within
the Softnet subproject supported by the Bavarian research
foundation.

REFERENCES

[1] B. Bruegge and A. H. Dutoit,Object-Oriented Software Engineering:
Conquering Complex and Changing Systems. Upper Saddle River, NJ:
Prentice Hall, 2000.

[2] T. Reicher, A. MacWilliams, B. Bruegge, and G. Klinker, “Results of
a study on software architectures for augmented reality systems,” in
Poster Session of IEEE and ACM International Symposium on Mixed
and Augmented Reality ISMAR 2003, Tokyo, Japan, 2003.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[4] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,Pattern-Oriented
Software Architecture, Vol. 2: Patterns for Concurrent and Networked
Objects. New York, NY: Wiley, 2000.

[5] G. E. Krasner and S. T. Pope, “A description of the model-view-
controller user interface paradigm in the smalltalk-80 system,” ParcPlace
Systems, Inc., Mountain View, USA, Tech. Rep., 1988.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture. A System of Patterns. John-
Wiley & Sons, 1996.

[7] “Studierstube Augmented Reality Project,” www.studierstube.org, 2003.
[8] W. Piekarski and B. H. Thomas, “Tinmith-evo5 - an architecture for

supporting mobile augmented reality environments,” inProceedings of
the 2nd International Symposium on Augmented Reality (ISAR 2001),
New York, USA, 2001.

[9] “Mobile augmented reality,” www.cs.columbia.edu/graphics/projects/
mars/mars.html, 1999.

[10] W. Friedrich, D. Jahn, and L. Schmidt, “Arvika - augmented reality for
development, production and service,” Proceedings of the International
Status Conference HCI, 2001.

[11] STAR consortium, “Star,” www.realviz.com/STAR/, 2002.
[12] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher,

S. Riss, C. Sandor, and M. Wagner, “Design of a component-based
augmented reality framework,” inProceedings of ISAR 2001, 2001.
[Online]. Available: citeseer.nj.nec.com/bauer01design.html

[13] C. Sandor, A. MacWilliams, M. Wagner, M. Bauer, and G. Klinker,
“Herding sheep: Live system development for distributed augmented
reality,” in IEEE and ACM International Symposium on Mixed and
Augmented Reality ISMAR 2003, Tokyo, Japan, 2003.

[14] A. MacWilliams, T. Reicher, and B. Bruegge, “Decentralized coordina-
tion of distributed interdependent services,” inProceedings of Middle-
ware 2003 Work-in-Progress, Rio de Janeiro, Brazil, 2003.

[15] D. C. Schmidt, “The adaptive communication environment (ace),” www.
cs.wustl.edu/∼schmidt/ACE.html, 2003.

[16] Object Management Group (OMG), “Common object request broker:
Architecture and specification, corba 2.6.1,” www.omg.org/cgi-bin/doc?
formal/02-05-08, 2002.

[17] T. Oshima, “Rv-border guards: A multiplayer entertainment in mixed
reality space,” inPoster session of IEEE Internation Workshop on
Augmented Reality, San Francisco, USA, 1999.

[18] C. Sandor, A. MacWilliams, M. Wagner, M. Bauer, and G. Klinker,
“Sheep: The shared environment entertainment pasture,” inIEEE and
ACM International Symposium on Mixed and Augmented Reality ISMAR
2002, Darmstadt, Germany, 2002.

[19] C. Robertson and B. MacIntyre, “Adapting to registration error in an
intent-based augmentation system,” inACM User Interface Software and
Technology 2002 (UIST 2002), Paris, France, Oct. 2002, presented as a
poster.

